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Aqueous foams continuously age due to fluid drainage and bubble coarsening, which makes it difficult to
perform steady-state rheological measurements. Consequently we have developed the foam drainage rheology
technique, where perfusion counteracts fluid drainage and bubble replenishment counteracts bubble coarsening
during measurement of the shear stresses by a rheometer. We evaluate published power-law and Herschel-
Bulkley models and find that parameters derived from emulsion experiments cannot describe our results. We
propose a hybrid model, which combines our earlier film-shearing model, where the film thickness depends on
liquid volume fraction, with a Herschel-Bulkley shear-rate dependence.
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I. INTRODUCTION

Aqueous foams are a class of disordered soft material that
has received a lot of scientific attention because despite their
simple composition �merely gas bubbles packed in water�
they exhibit a rich variety of dynamical and mechanical be-
haviors �1–3�. These include aging, which is due to the com-
bined effects of fluid drainage �4,5� and bubble coarsening
�6,7� that are often coupled �8–10�. Although drainage and
coarsening are fairly well understood for certain surfactant
systems �11–13�, the shearing behavior of foams remains
poorly understood �14�. One outstanding question is how en-
ergy is dissipated during shearing �15� because it is a com-
plex process that spans several orders of magnitude in size
from motion of surfactant molecules to large scale motion of
bubbles. On the experimental side, steady-state rheological
measurements are problematic because the time scales of the
aging processes are often comparable to those of measure-
ments �16,17�. Thus despite their apparent simplicity, foams
have a complex phenomenology and continue to present a
broad range of challenges for the scientific community span-
ning physics and engineering. Moreover, it is precisely this
rich diversity of behaviors that has allowed for a plethora of
different uses of foams in industry, such as minerals separa-
tion, water purification, and advanced oil extraction
�2,18,19�.

Stable foams with low fluid content that are slowly
sheared at small amplitudes can be modeled with reasonable
success based on perturbations of the surface area, which is
proportional to the surface energy �16,20–22�. However out-
side this limiting case the physics becomes complicated. At
increased shearing amplitudes, bubbles rearrange quickly
�23�, thereby invalidating perturbation approaches. Addition-
ally, the foam’s fluid content has a large effect on shearing
behavior; as the liquid volume fraction increases the bubbles
spontaneously rearrange �24� and at the critical liquid vol-
ume fraction, �c�0.36, both the elastic and loss moduli van-
ish �17,25–28�. Moreover, inertial, viscous, and interfacial
effects such as Marangoni stresses and surface viscosity be-
come important at faster shear rates �15,29,30�. Given that

all these complexities impede theoretical treatment, only a
synthesis of careful experimental and theoretical work can
lead to a complete understanding of foam rheology.

On longer time scales the metastability of foam manifests
itself through aging processes, which principally are coars-
ening and drainage. Coarsening refers to the growth of
bubbles due to preferential gas diffusion across thin liquid
films from smaller bubbles to larger bubbles. Smaller
bubbles shrink and disappear, leaving behind coarser �i.e.,
larger� bubbles. Drainage refers to the flow of liquid due to
capillary and gravitational forces. Both processes minimize
energy: the former minimizes surface energy by reducing the
interfacial surface area, whereas drainage lowers the gravita-
tional potential energy. In general drainage and coarsening
couple to produce a positive feedback loop that minimizes
energy �9�: drainage removes liquid which enhances diffu-
sion between bubbles and coarsening enlarges the channels
which enhances drainage. Additionally, coarsening affects
shearing �31� and vice versa �32�, and it may be natural to
expect sheared foams to drain differently than unsheared
foams given that granular materials dilate �33� upon shear-
ing. Although considerable progress has been made regard-
ing drainage �4,5,11,34,35�, coarsening �6,12,13,36�, and
their couplings �9,37�, many fundamental aspects of foam
rheology remain poorly understood �14�.

A major experimental challenge for rheologists is that
foams generally evolve during measurements �17,27�. For
example, wet foams drain quickly and foams with small
bubbles coarsen rapidly, which make steady-state measure-
ments difficult if not impossible. Experimentalists have re-
solved the drainage issue using two different methods. One
option is using fluids with high viscosities to diminish the
drainage rate �17�. But increasing the bulk viscosity dimin-
ishes the interfacial rigidity, which is characterized by the
Boussinesq number Bo=�s /�L, and therefore affects rheo-
logical behavior �29�. A second workaround is using concen-
trated emulsions �which are also known as liquid-liquid
foams� because they have identical geometry but drain and
coarsen much slower. Since the two phases have similar den-
sities �unlike water and air�, buoyancy effects lead to much
reduced drainage rates �38�. Moreover the diffusive transport
of the dispersed phase �e.g., oil� through the continuous
phase �e.g., water� is also very slow. Despite their striking
geometric similarity, emulsions and foams differ in terms of*sak@wpi.edu
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their dynamics: Earth-bound foams always drain and their
films are almost always in motion. If drainage flow couples
to shear flow, then emulsions are not a suitable general proxy
for foams, which necessitates direct rheological measure-
ments of draining foams.

In this work we examine the fluidlike behavior by con-
tinuously shearing foams using our recently developed foam
drainage rheology �FDR� technique �39�. By continuously
regenerating the foam we prevent coarsening from affecting
the measurements and by fluid perfusion �i.e., replenishment�
we fix the liquid fraction and prevent drainage from ad-
versely affecting the measurements. Rather than only chang-
ing the shear rate, as is done using conventional methods, we
have introduced an additonal degree of freedom, which is
changing the liquid volume fraction on the fly. This allows us
to determine the relationship between liquid content and
shear stress in a single session.

Since the FDR technique heavily involves drainage, we
briefly review drainage in Sec. I A. In particular we extend
foam drainage theory for our experiments by including con-
tinuous regeneration, injection from a point source, and foam
expansion due to high liquid content. In Sec. I B, we review
four constitutive relations between stress and rate of strain
for continuous shearing �27,30,39,40�, which essentially are
variants of the Herschel-Bulkley equation that differ in their
treatment of the yield stress and liquid volume fraction. Sec-
tion II gives experimental details of the FDR technique and
in subsequent sections we simultaneously present and dis-
cuss results for a coarse and a fine soap foam. Section III A
treats the self-similar nature of incremental perfusions. Sec-
tion III B deals with the inverse relationship between shear
stress and liquid volume fraction. We evaluate the evolution
of the shear stress due to an incremental perfusion sequence
in Sec. III C. Section III D gives the experimentally deter-
mined constitutive relation between shear stress, shear rate,
and liquid volume fraction, which we compare with existing
models and use to create a hybrid model. Section III E pre-
sents pulsed perfusions at different rates of shear and serves
as a check of the rheological models. We conclude and offer
suggestions for further investigations in Sec. IV.

A. Drainage

Liquid flows through foams in a tortuous fashion, which
differs from flow through porous solids, such as sandstone,
because the shape of the bubbles adjusts to the flow rate.
Moreover, the geometry of a foam is based on surface energy
minimization that leads to certain topologies for the continu-
ous �liquid� and dispersed �gas� phases. It can be idealized as
packed identical Kelvin bubbles, which are 14-sided poly-
gons and whose equivalent radius R is based on their volume
�see the sketch in Fig. 1�a��. The continuous phase is de-
picted by the blue �dark gray� regions decorating the edges
of the polygon. It is composed of nodes �see Fig. 1�b�� and
channels �also known as Plateau borders� �see Fig. 1�c��.
Increases in drainage flow, q, are accompanied by increases
in liquid volume fraction, �. This results in an increasing
channel width, r, as well as expansion of the foam’s total
volume �we are assuming isobaric conditions�, which in turn

increases the separation between neighboring nodes, L. Tak-
ing into account this expansion effect Neethling et al. �34�
developed an implicit relationship for �,

� = �c� r

L
�2

�1 − ��2/3 + �n� r

L
�3

�1 − �� �1�

with

�c = 0.171, �n = 0.20.

Similar to Darcy flow, the liquid flow rate in foams is
proportional to the driving forces, which are gravity, �g, and
capillarity, ��� /r�, where � is the surface tension and r is
the radius of curvature of the channel �see Fig. 1�c��. Experi-
ments show a simple power-law relation between the average
fluid velocity, u, and liquid volume fraction, �, but there is
quite a degree of variability in the prefactor and exponent
�11,35,41�. Accordingly, the velocity can be written as

u =
KL2��

�
��g + ���

r
�	 , �2�

where L is the edge length of the channels and K is a dimen-
sionless prefactor, which we call the permeability prefactor.
Both bubble size and surfactant type affect the two perme-
ability constants, a fact which is only partially understood.
Certain surfactants result in more rigid interfaces, whereas
others result in more mobile interfaces, which may be attrib-
uted to high and low surface viscosities, respectively. For the
former case the boundary condition is no slip at the channel
walls, the flow is Poiseuille-like in the channels, and the
permeability exponent is �=1. For the latter case the inter-
faces are flowing and offer little resistance to the fluid flow
in the channels. The flow therefore is pluglike and the per-
meability exponent is ��1 /2. For the surfactant used in our
investigation the permeability exponent is close to 1/2 and
the permeability prefactor increases with diminishing bubble
size—see Appendix A.

We now reformulate foam drainage theory in the context
of our experiments, which involve continuous bubble gen-
eration and perfusion from a point. We denote the gas’ volu-
metric flow rate 	gas and assume that the gas pressure inside
the bubbles is atmospheric. The gas flux is proportional to
the bubbles’ rise velocity and the volume not taken up by
liquid, 1−�. Thus the velocity of the rising bubbles given by
Eq. �2� is modified �42�,

FIG. 1. �Color online� �a� A Kelvin bubble, which is an idealized
foam bubble whose faces are squares and hexagons. The edge
length is L and the effective bubble diameter is R=1.393L. �b�
Closeup of a node, which is a fourfold junction. �c� An idealized
channel, which has length L and radius of curvature �in the trans-
verse direction� r.
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ububbles = − 	gas/�1 − ��ẑ , �3�

where ẑ is the unit vector pointing downward in the direction
of gravity. To account for the rising bubbles, the drainage
velocity in the laboratory frame is

u =
KL2��

�
��g + ���

r
�	 − � 	gas

1 − �
�ẑ . �4�

Continuity of liquid leads to the foam drainage equation,

�

�t
� + � · 
KL2��+1

�
��g + ���

r
�	 − 	gas� �

1 − �
�ẑ� = 0,

�5�

which describes how fluid within a foam is redistributed.
Fluid perfusion at a volumetric rate 	l at a point that, for

convenience, is set to the origin introduces a source term to
the right-hand side of Eq. �5�,

�

�t
��x,t� + � · 
KL2��x,t��+1

�
��g + �� �

r�x,t��	
− 	gas� ��x,t�

1 − ��x,t�	ẑ�
= 	l��x� , �6�

where ��x� is the Dirac delta function.

B. Rheology

There is little general consensus on any basic theory for
rheology and, in fact, several different experimental trends
have been reported, which in part is due to the dependence
on bubble size, liquid distribution, as well as surfactant type.
Since foams coarsen and drain over time, controlling the first
two parameters during measurement adds to the challenges
faced by experimentalists. Moreover, there is a wide range of
rheological measurements, such as oscillatory shearing at
small and large amplitudes, continuous shearing, and step-
strain shearing, each of which reveals different limiting be-
haviors. Many details remain unknown �14,43�, and thus a
complete constitutive relation that takes into account mate-
rial properties, such as bubble size, liquid content, and sur-
factant type, as well as the shearing process, is likely to be
quite complex.

Several relationships between stress, 
, and steady-state
shear rate, �̇, have been reported. These functionally
resemble a Herschel-Bulkley fluid,


 = 
y + k�̇n, �7�

where 
y is the yield stress, k is the consistency �44�, and n is
the power-law index. It is implied that the yield stress and
consistency depend on material properties �e.g.,
R ,� ,� ,� , . . .� but not on �̇. The reported values of the
power-law index vary considerably, 0.2�n�1 �14�, which
has, in part, been attributed to differing physicochemical
properties of surfactants �29�.

Early work on foam rheology was performed by groups
headed by Princen �45� and also Armstrong �20�. These stud-
ies were based on the film-stretching model that shares simi-
larities with Bretherton’s analysis �46� for bubbles flowing
along a wall �21� and is based on a fixed film thickness and
the dilation and contraction of films that occur during
shearing—see Fig. 2�a�. The liquid volume of a dilating film
increases, producing a convergent flow into the film �see Fig.
2�b��. Conversely for film contraction a divergent flow out of
the film occurs. In both cases the dynamics are set by a
balance of the stresses, which are viscous shearing, ��̇, and
surface tension, � /R, in the transitional region between the
Plateau border and the film �the gray band on the left in Fig.
2�b��. This balance is given by the capillary number Ca
���̇R /�. Schwartz and Princen �47� worked out the details
and found a sublinear dependence of the shear stress on the
rate of strain,


  ��

R
�Ca2/3, �8�

which was a great achievement because it provided a mecha-
nism for explaining thixotropy �shear thinning�. Subse-
quently Princen and Kiss �27� overcame some of the experi-
mental difficulties associated with shear stress measurements
and used a Couette geometry to measure a series of eight
oil-in-water emulsions with a range of continuous fractions,
0.024���0.17. They adapted a semiempirical model
loosely based on the film-stretching model �Eq. �8�� by in-
cluding a yield stress and reducing the exponent by 25%,

contracting
film

stretching
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film
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b c d

h
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FIG. 2. �Color online� Schematics of two types of shearing mechanisms: �a� scenario of film stretching and film contraction, with the
region of interest �ROI� shown in �b�, which is a convergent flow due to film stretching; �c� scenario of film shearing, with the ROI shown
in �d�, which is shearing due to opposing interfacial flows.
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 = 
y + ��

R
�kPCa1/2

with


y = ��

R
��c1 + c2 log10�����1 − ��1/3

and

kP = c3��c − �� , �9�

where �c=0.27 and the empirical parameters are c1=−0.080,
c2=−0.114, and c3=32. Until recent publications by Denkov
and co-workers �30,43� and Soller and Koehler �39�, Eq. �9�
was the only constitutive relation for continuous shearing
that accounts for �.

However almost every aspect of Eq. �9� has been called
into question by rheological studies from other groups. For
example, experiments by Saint-Jalmes and Durian �17�
found that foams lose their rigidity at �c=0.36, which is 30%
higher than reported by Princen and Kiss. Measurements us-
ing a parallel-plate geometry by Denkov �29� showed that
the type of surfactant is an important material parameter;
exchanging the surfactant can result in a factor of 2 change
in the power-law index �i.e., n=0.24→0.42�. More recently,
we performed measurements on a monodisperse soap foam
and found that Princen’s parameters overpredicted the shear
stresses by about a factor of 2 �39�.

Coussot et al. �48,49� used pastes as a model system for
their study of shear-thinning yield-stress fluids, from which
they developed a different picture for the yielding transition
from elastic deformation to viscoplastic flow. They found
that for continuous steady-state shearing there are a mini-
mum shear stress and associated minimum shear rate; for
lower stresses the shearing rate fluctuates and is unsteady.
They modified a simple power-law relation between the
shear stress and rate of strain by imposing a flow rule for the
minimum shear rate, �̇c, and critical stress, 
c, for continuous
steady-state shearing,





c
= � �̇

�̇c
�n

for 
  
c and �̇  �̇c. �10�

Model of Coussot et al. can be rewritten as a Herschel-
Bulkley equation by defining the consistency kC
= �
cR /���� /�R�̇c�n, setting the yield stress to zero and im-
posing a threshold stress condition


 = ��

R
�kCCan with 
  
c. �11�

Rodts et al. �40� performed wide-gap Couette experiments
on a shaving cream foam with MRI imaging to determine the
shearing velocity profiles. In agreement with their earlier
work on pastes, they observed a shear band that grows in
width from the inner rotating cylinder with increasing torque.
In that study �=0.07, R=10 �m and from their data we
extract the power relation 
�0.07�� /R�Ca0.25 for higher
shear rates, �̇�1 rad /s.

An alternative to the film-stretching dissipative mecha-
nism of Princen and Kiss is film shearing �15,30,39,50�. The

films are not considered as thin membranes that have plug-
like flow as in the Princen model, rather the shearing of the
bubbles causes a lubrication flow and the films have a finite
�and in some cases even substantial� thickness. Dilatational
viscosity of the interfaces, as well as Marangoni forces, re-
sults in surface stresses that are directed as indicated by the
curved arrows in Fig. 2�c�. On a conceptual level, the foam
resembles a collection of balloons that are pressed together
in a water bath and sheared. Similar to dense granular flows,
the bubbles cannot rotate in a coordinated fashion and in-
stead rotational frustration occurs whereby adjacent bubbles
and their interfaces rotate in opposing directions. The result-
ing lubrication flow between the bubbles is shown in Fig.
2�d�. Thus the macroscopic shear rate, �̇, is locally magnified
to �R /h��̇ from which a constitutive relation follows:


 �
�R

h
�̇ . �12�

If the interfaces remain rigid and the film thickness remains
constant this model predicts a linear relationship between
stress and rate of strain, which is the main shortcoming of
the film-shearing model in its original form, because real
foams are shear thinning. However if the film thickness var-
ies with shear rate, �̇, or liquid fraction, �, some of the in-
teresting nonlinear rheological behaviors of foams can be
accounted for �30,39�.

The version of the recent film-shearing model by Denkov
et al. �30� is based on a film thickness that varies with shear
rate and the assumption that Marangoni forces lead to qua-
sirigid interfaces. When opposing bubbles first come into
contact a new film is formed, which initially grows in size as
the bubbles slide past each other, then shrinks, and finally
disappears when the bubbles lose contact. The model as-
sumes monodisperse bubbles arranged in an fcc lattice that
have coordinated shear planes. It takes into account the du-
ration, alignment, and geometry of the sheared films. The
rate at which newly formed films thin increases with osmotic
pressure, which is proportional to the deformation of the
bubbles and therefore increases with diminishing liquid con-
tent. It disregards the disjoining forces acting on opposing
sides of the films; thus it is valid only for cases where the
films are sufficiently thick, h�10 nm, and their thickness is
set by shearing. Therefore the model is only valid for larger
shear rates and foams whose liquid content is moderate,
0.03���0.15. The predicted shear stress combines an elas-
tic and a viscous component,


 = 
y��� + 0.806��

R
�Ca1/2�1 − ��5/6�−1/2. �13�

Thus Denkov’s analysis offers a theory for the shear-thinning
behavior, 
Ca1/2 as observed by Princen and Kiss �27�,
without adjustable parameters. Because no precise prediction
for the elastic contribution to the yield stress currently exists,

y��� needs to be measured directly or determined from
semiempirical models such as Eq. �9�. Note that the re-
stricted range of liquid fraction removes the divergence due
to �−1/2 for �→0 as well as avoids the rigidity-loss transition
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for �→�c where the foam transitions to an easily sheared
bubbly fluid.

We recently developed a film-shearing model �39�, that is
based on observations by Carrier et al. �51� showing the
film’s thickness increases with liquid content. The mecha-
nism for this film swelling remains poorly understood and
may be due to drainage flow from the channel-like network
leaking into films or Marangoni forces creating a circulatory
flow in the films. Accordingly, we write the relationship as

h � h0�1 + h��� , �14�

where observations show that the film-swelling parameter,
h�, diminishes with increasing bubble size. Since the friction
between shearing bubbles diminishes proportional to the lu-
bricating film width, it follows 
� �1+h���−1. We used the
film-thickness dependence for the consistency in the power-
law model �Eq. �11�� and proposed


 = ��

R
�� g

1 + h��
� , �15�

where the dimensionless consistency, g, depends on the shear
rate. For a soap foam with R=0.5 mm bubbles, the measure-
ments indicated a simple power-law dependence g�2Ca0.2,
and the film-swelling parameter had a weak logarithmic de-
pendence on shear rate, h��Ca��10−2 log�Ca�. Our mini-
malist model did not include a yielding criterion nor did it
account for the rigidity-loss transition at �c because the fit
was sufficiently good not to warrant additional terms and
parameters.

Table I outlines the important features, which differentiate
the three rheological models. Denkov’s model shares simi-
larities with the Princen and Soller models. The dissipative
term of the shear stresses is proportional to �̇1/2, as is the
case for Princen’s model. The source of dissipation is lubri-
cation flow in the films, thereby resembling our model. Since
our model was developed from FDR experiments, it is pri-
marily based on the dependence of shear stress on liquid
volume fraction, whereas the other two models are primarily
based on standard rheograms �where the dependence of the
shear stress on shear rate is measured�.

II. METHODS

The FDR technique is based on creating a steady-state
volume of foam in the shearing region, where both liquid

volume fraction and bubble size are controlled. The setup is
photographed in Fig. 3�a�, whose centerpiece is an advanced
stress-controlled rheometer �AR2000 by TA instruments�.
The foam is inside a custom-built cylindrical shear cell and
is continuously generated from a foamate reservoir located at
the bottom through which N2 gas bubbles are slowly blown
out of glass frit, which is shown schematically in Fig. 3�b�.
The gas flow rate is controlled by a self-regulating flow
valve. The slow regeneration causes the foam to rise at a
slow rate, ububble=−0.01 cm /s. �We choose the z axis to
point downward, thus the rising bubbles have negative ve-
locity.� A hot wire loop at the top of the shear cell ruptures
the foam emerging from the tube and sets the total height of
the foam, H=20 cm. The outer cylinder of the shear cell is a
25-cm-long Plexiglas tube with diameter D2=3.5 cm, and to
minimize wall slip the inner surface has been roughened. The
inner cylinder rotates at angular velocity �, has diameter
D1=1.3 cm, and is covered by rough grit 40 sandpaper to
also prevent wall slip. The syringe pump on the left side of
the picture perfuses the foam from four needles, which are
symmetrically spaced 1 cm from the top of the cell in order
to create a uniform perfusion. The syringe pump on the right
of the picture withdraws fluid from the liquid reservoir to

TABLE I. Main features and differences of the three rheological models.

Princen and Kiss
Ref. �27�

Denkov et al.
Ref. �30�

Soller and Koehler
Ref. �39�

Dissipative region Transitional region Film Film

Main source of dissipation Dilative and contractive Lubrication Lubrication

Type of flow in films Pluglike Transverse shear
Transverse shear with

in-plane swirling

Film thickness Fixed Increases with shear rate and liquid content Increases with liquid content

Elastic yield-stress component Yes Yes No �i.e., 
y =0�
Valid range of � Not specified 0.02���0.15 ��0.2

heater
wire

D1

ql

D2

Z H

qg

fluid
reservoir

ω, Ma b

N2
gas

ROI ROI

FIG. 3. �Color online� �a� Photograph of the FDR setup, where
the two syringe pumps, the N2 gas cylinder and rheometer are la-
beled. The dashed ROI is shown schematically in �b�. The sample
chamber is composed of an outer cylinder, with diameter D2

=2.35 cm and height of 25 cm, where the foamate reservoir is
contained in the bottom 5 cm, and an inner cylinder, with height
Z=10 and diameter D1=1.3 cm, which rotates at angular velocity
�. A hot wire at the top pops bubbles and maintains the foam height
H=20 cm. Fluid is injected at total flow rate ql, and gas is injected
through glass frits inside the foamate reservoir at flow rate qg

=5 SCCM �SCCM denotes cubic centimeter per minute at STP�,
which produces monodisperse bubbles.
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compensate for the draining fluid in order to maintain the
reservoir fluid height at 5 cm.

A small patch of the outer cylinder was left smooth to
allow for visual inspection of the bubbles and their shear. We
observed that bubbles moved along the outer wall only for
higher angular velocities, ��50 rad /s. Additionally, higher
shear rates changed the quality of the foam by splitting larger
bubbles and creating a finer foam.

We used Dawn dish detergent, with concentration of 1%
by volume in water, which produces stable bubbles that do
not burst. The foamate’s surface tension was �
=20 dyn /cm. In this study, N2 gas and two types of fritted
glass tubes were used: extra coarse and coarse. Pictures of
the bubbles rising inside the fluid reservoir show that they
have radii R=0.5�0.2 mm and R=0.2�0.1 mm, respec-
tively.

In the FDR experiments fluid perfusion and rotational ve-
locity of the inner cylinder were controlled while the torque
due to foam shearing was monitored at a sample rate of
3 Hz. The average shear stress at the inner cylinder’s sur-
face is calculated from division of the torque by the surface
area of the cylinder, which is

�
� =
M

�DZ
. �16�

We have neglected the contribution of the disk at the bottom
of the inner cylinder, which results in small overestimates of
the average shear stress for uniform foam that are no greater
than 3%. Two perfusion sequences were used, which were
pulsed perfusion and incremental perfusions where the injec-
tion rate increases stepwise. Examples of these sequences are
shown in top portions of Figs. 4�a� and 4�b�, respectively.
The bottom portions show the concomitant changes in the
torque on the rotating inner cylinder. Figure 4�c� shows re-
peated pulsed perfusions with a hundredfold increase in the
angular velocity, from �=0.3 to �=30, which results in
threefold increase in torque. All the experiments are variants

of these two types of perfusion sequences and the angular
velocity is either held constant or changed in steps.

III. RESULTS AND DISCUSSION

We begin with the response of the shear stress due to
liquid perfusion in Sec. III A. With no theory and a minimum
of assumptions we estimate the drainage rates from the rheo-
logical data and make comparisons with foam drainage
theory. In Sec. III B we explore the inverse relationship be-
tween the average shear stress and the average liquid volume
fraction; it is precisely this relationship that is at the heart of
our rheological model �Eq. �15��. Section III C is devoted to
modeling incremental perfusion sequences for the coarse and
fine foams and performing a self-consistency check with
foam drainage theory. This is followed by a section on the
shear-rate dependence of the dimensionless consistency of
our model, g in Eq. �15�, which suggests a hybrid model that
combines a film-swelling dependence on � with a Herschel-
Bulkley dependence on �̇. Finally, in Sec. III E we analyze
the effects of changing the shear rate on shear stress for
pulsed perfusions in terms of the Herschel-Bulkley, Coussot,
and our recently developed hybrid models.

A. Self-similar nature of perfusions

Systematic perfusion procedures result in characteristic
changes in the shear stress, which in turn are due to the
self-similar nature of foam drainage �52�. This is evident
from the infusion pulses of increasing duration resulting in
stress drops, as shown in the top and bottom portions of Fig.
4�a�. The stress drops are self-similar, which level off for
times exceeding 2 min, and all collapse onto a master curve
in Fig. 5�a�. Likewise, incremental perfusions result in stress
drops that have a similar shape although the stresses in suc-
cessive steps do not collapse in the same fashion as for the
pulsed perfusions �compare Figs. 4�a� and 4�b��. The stresses
drop off more rapidly for successively increasing perfusion
rates and level off at lower values. The self-similar nature of
the normalized stress drops is manifested by their collapse
onto a master curve �Fig. 5�c��, where for each incremental
perfusion step the time is rescaled by the characteristic drain-
age time, Td, over which the normalized stress has dropped
by 90%. Moreover, this characteristic time provides an esti-
mate of the drainage velocity because the stresses level off
once the foam is uniformly perfused from the point of injec-
tion down to the bottom of the rotating inner cylinder, which
means the perfusion has reached a distance of �Z. Accord-
ingly, an estimate for the drainage velocity is

uest. = Z/Td. �17�

The liquid fraction can be estimated from the ratio of the
liquid uniformly perfusing the foam to its volume inside the
shearing gap,

�est. =
qTd

��/4��D2
2 − D1

2�Z
. �18�

Figure 5�d� is a log-log plot of the estimated drainage veloc-
ity, obtained from Eq. �17�, and the liquid fraction, obtained
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FIG. 4. �Color online� Three types of FDR experiments of the
coarse foam. �a� Top: perfusion pulses with ql=1 ml /min and in-
creasing durations, Tp=19,61,181,600 s. Bottom: torque on rotat-
ing inner cylinder, which changes in response to perfusion. �b� In-
cremental perfusions of increasing flow rates, ql

=0.1,0.3,1 ,3 ,10,30 ml /min followed by 1 min of no perfusion.
In �a� and �b� the angular velocity was fixed, �=1 rad /s. �c� Two
pairs of ql=5 ml /min pulses with duration �Tp=181 s, which are
separated by 3 min. The angular velocity was increased from �
=0.3 rad /s for the first pair of pulses to �=30 rad /s for the second
pair of pulses at t=1580 s and was indicated by the arrow.

RAENELL SOLLER AND STEPHAN A. KOEHLER PHYSICAL REVIEW E 80, 021504 �2009�

021504-6



from Eq. �18�, for both the coarse and fine foam. Thus the
FDR experiment can be used to detect extremely low drain-
age rates because the rheometer is very sensitive to small
changes in torque, which result from small changes in the
foam’s liquid volume fraction. Moreover, it is possible to
estimate the drainage rate based only on two rudimentary
assumptions: �i� long perfusions result in a uniform liquid
volume fraction and �ii� shear stresses monotonically dimin-
ish with increasing liquid volume fraction.

We next compare the u dependence on � with an earlier
study using the same soap �5�. As summarized in Appendix
A, the permeability exponent was found to be ��0.55,
which we use for the logarithmic slopes in Fig. 5�d�. The
velocity prefactors from the fits are given in the third column
of Table II, which according to Eq. �2� is KL2 /� �note that
the capillary term can be dropped for determining the aver-
age velocity�. Using the channel length estimated from the
bubble radius, L=0.718R, we report the permeability prefac-
tor estimated from the data in the fourth column of the Table
II. In the case of the coarse foam this estimate agrees well
with the value obtained by interpolating data from previous
work given in the last column. For the fine foam however the
estimated permeability prefactor is almost double that based
on the extrapolation from previous work, which means that
the fine foam drains almost twice as fast as one would expect
from the three bubble sizes analyzed in an earlier letter �5�.
Possible causes for this discrepancy are as follows. �1� The
fine foam coarsens about twice as rapidly as the coarse foam,
thus the average bubble size will have grown in the half hour
it takes to move into the shearing gap, which in turn leads to
a faster drainage rate. �2� The theoretical velocity is based on
an entirely empirical extrapolation of the permeability
prefactor to our much finer foam �the finest foam in previous

work had R=0.7 mm that is several times larger�, which has
no theoretical basis. �3� The finer foam has far greater mea-
surement noise, which contributes to the errors of determin-
ing the characteristic drainage time.

B. Effects of the changing liquid fraction on rheology

Having established that foams in the FDR setup drain as
expected, albeit in the case of the fine foam the permeability
prefactor is somewhat greater than naive extrapolation from
earlier work predicts; we include foam drainage simulations
for a more quantitative analysis involving ��z , t� based on
Eq. �6�. The permeability parameters are given in Appendix
A; K decreases with bubble size as described by Eq. �A1�
and �=0.55. The calculations were performed using MATLAB

and details are given in Appendix B.
Figure 6�a� is a spatiotemporal plot of the liquid volume

fraction evolving as four pulses of increasing duration are
injected; the perfusion sequence is given in Fig. 4�a�. The
brightness is proportional to the liquid fraction and the width
of the bright bands is given by the perfusion time. Similar to
the average shear stress �Eq. �16��, we define the average
liquid volume fraction of the foam in the gap surrounding the
rotating inner cylinder,

��� = �
z�Z

��z,t��dz

Z
� , �19�

which is shown in Fig. 6�b�. Note the inverse relationship
between the modeled mean liquid fraction about the inner
cylinder and the measured mean shear stress on the inner
cylinder in Fig. 4�a�. When ��� reaches an upper plateau, �
�
descends to a local minimum and vice versa. Thus, it is natu-
ral to consider the inverse relationship 
−1 vs �, which is
shown in Fig. 6�c� for all three experiments from Fig. 4. The
correlation is linear, thereby implying 
=g / �1+h���, which
is the foundation of the Soller-Koehler model �39�. The
slight amount of hysteresis is to be expected because changes
in the perfusion cause spatial variations in � and 
 and the
local relationship does extend to a global average, i.e., �
�
�g / �1+h�����.
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FIG. 5. �Color online� Drops in the shear stress due to fluid perfusion for the coarse foam. �a� The response of the shear stress due to
perfusion by four pulses of increasing duration, from Fig. 4�a� collapses. �b� The evolution of the stress drops from the six-step incremental
perfusion procedure from Fig. 4�b�. �c� Collapse of the normalized stress drops from the incremental perfusion procedure where the time is
rescaled by the characteristic drainage time Td, which corresponds to a 90% drop. �d� The drainage velocity obtained from Eq. �17� versus
the liquid fraction obtained from Eq. �18�. The solid and dashed lines are the best fits to the mobile interface drainage model with
�=0.55 for the coarse and fine foams, respectively.

TABLE II. Velocity and permeability prefactors determined
from the self-similar analysis.

R
�cm� K�gL2 /� Estimated K

K from
Eq. �A1�

Coarse 0.05�0.01 1.04�0.17 0.0082�0.0014 0.0092

Fine 0.02�0.01 0.73�0.08 0.0362�0.0042 0.018
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C. Modeling incremental perfusions at fixed shear rate

We calculate the evolving liquid volume fraction for in-
cremental perfusions in order to evaluate the models by Prin-
cen and Soller. We do not separately treat the model by Den-
kov et al. because it gives values very close to those of
Princen albeit its formulation is more complex and based on
a rigorous analysis. Since Coussot’s model does not have an
� dependence, it is not applicable for incremental perfusion
experiments. We then optimize the parameters of the remain-
ing two models for both foams in terms of the best experi-
mental fit and find for the Princen model that emulsion pa-
rameters differ substantially from those of foams. We
conclude this section with a self-consistency analysis of the
Soller model.

In order to quantify the fitting quality, we use the mean
relative variance between the measured and modeled shear
stresses,

E = �
i=1

N � 
measurement,i


fit,i
− 1�2

/N , �20�

for a data set of i=1,2 , . . . ,N measurements. Since the ex-
periments lasted for several minutes and data were acquired

at 3 Hz, the number of measurements typically was N
103–104.

The thick gray curves in Fig. 7 show incremental perfu-
sion FDR experiments for both the fine and coarse foams.
The dashed blue �dark gray� lines show predictions from
Princen’s model using original parameters, which were de-
rived from emulsion experiments. For the fine foam the shear
stresses are overestimated by about 50%, whereas for the
coarse foam the shear stresses are underestimated by about
20%. We optimize Princen’s parameters to our foam experi-
ments by minimizing E, shown as dotted-dashed curves, and
report them in Table III. The fitting errors using emulsion
parameters are E=0.05,0.03 for the fine and coarse foams,
respectively, which are reduced more than tenfold upon
optimization—see the fifth column of Table III. Optimization
has changed the yield-stress parameters, c1 , c2, which re-
duced the yield stress and consequently the strain-dependent
prefactor, c3, has increased.

Finally, the solid black line shows the optimized fits using
the Soller model, which in the case of the coarse foam are in
agreement with our previous publication �39� �the fine foam
was not included in this earlier work�. As is evident from the
table, the Soller model achieves a smaller fitting error E al-
though it has one less free parameter than Princen’s three-
parameter model.
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We next check the Soller film-shearing model for self-
consistency by simultaneously optimizing all parameters,
which are three foam drainage parameters from Eq. �6�, R, �,
and K, as well as the two shearing parameters from Eq. �15�,
g and h�. If this model is self-consistent, then the optimized
values for K and � should conform to expectations based on
foam drainage theory, and the optimized bubble size should
agree with estimates obtained from images. Moreover the
optimized shearing parameters, g and h�, for the coarse and
fine foams should be consistent with those from previous
work �39� and in agreement with those of Table III above.
Conversely, doubt is cast upon the Soller model if the opti-
mized parameters are inconsistent with expectations.

We perform simulations of the liquid volume fraction for
sets of drainage parameters that span the parameter space
R���K and determine the best shearing parameters, g and
h�, for fitting the data. We identify the optimum parameter
set �R ,� ,K ,g ,h��, which has the smallest fitting error E, for
self-consistency comparisons. Figures 8�a�–8�c� show the
variations in E for the three drainage parameters about their
optimized values, which are listed in Table IV. The associ-
ated uncertainty intervals were determined such that 68% of
the data points are contained within the corresponding band
of values calculated by the model. For the coarse foam the
literature values lie within uncertainty estimates of the opti-
mized values:

�1� The optimized bubble size agrees with visual observa-
tions when considering the degree of measured polydisper-
sity is 30%.

�2� Within error estimates the optimized permeability ex-
ponent, �, agrees with previous work summarized in Appen-
dix A.

�3� The optimized permeability prefactor, K, agrees well
with that calculated from the bubble size �using R
=0.5 mm in Eq. �A1��.

We next discuss the fine foam. We find the same difficulty
as observed for the self-similar analysis of the incremental
perfusion experiment in Sec. III A, which is that the fine
foam drains faster than expected based on extending previ-
ous work. In summary we find the following:

�1� The optimized bubble size is somewhat greater than
expected but still contained within the degree of polydisper-
sity. The bubble size was measured at the bottom of the foam
column, and during 20 min for the bubbles to migrate into
the region surrounding the inner cylinder they will be some-
what larger due to coarsening.

�2� The permeability exponent is in accord with previous
work.

�3� The permeability prefactor is about twice that ex-
pected from extrapolating the data of previous work, where
the bubbles were 6–20 times larger. However there is no
theory for the dependence of the permeability prefactor on
the bubble size, and therefore this discrepancy may be due to
the ad hoc nature of extrapolation over such a large range.
Moreover, a similar large value for the permeability prefactor
was also observed in the self-similar analysis of Sec. III A
above.

The shearing parameters, g and h�, are comparable to
those obtained previously using different drainage param-
eters �compare Tables III and IV�, but the fitting errors have
been reduced fivefold. In particular, had we included the op-
timized fit in Fig. 7�a�; it would have lain on top of the data
�but to avoid cluttering it was not plotted�. Thus the analysis
of both foams shows self-consistency; however, our rheo-
logical measurements indicate that the fine foam drains faster
than expected based on a naive extrapolation of previous
data, which has also been noted by Carrier et al. �51�.

D. Constitutive relation

Historically, research has focused on determining consti-
tutive equations, which relate the stress to the shear rate

TABLE III. Parameters for the incremental perfusions shown in Fig. 7. The first row shows Princen’s
published values for emulsions. Uncertainties based on 95% confidence intervals are supplied where
appropriate.

Princen �Eq. �9�� Soller �Eq. �14��

c1 c2 c3 E g h� E

Emulsion −0.08 −0.114 32

R=0.2 mm −0.053�0.013 −0.034�0.005 66�10 7�10−3 0.182�0.002 11.3�0.6 5�10−3

R=0.5 mm −0.198�0.017 −0.104�0.004 86�7 1�10−2 0.430�0.002 28.4�0.6 3�10−3

TABLE IV. Comparing the optimized foam drainage parameters with values expected from previous work
�see Appendix A and Eq. �A1� for K�. The last three columns give the shearing parameters and fitting error.

R
�cm� � K g h� E

Fine foam Optimized 0.025�0.002 0.6�0.04 0.027�0.009 0.23�0.001 21�0.5 9�10−4

Expected 0.02 0.55 0.0139

Coarse foam Optimized 0.043�0.002 0.55�0.04 0.0072�0.003 0.37�0.001 22�0.2 8�10−4

Expected 0.05 0.55 0.00733 0.42�0.002 a 30�4 a

aValues taken from �39�.
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while attempting to keep the liquid volume fraction fixed.
Having established the inverse relationship between liquid
fraction and stress at a constant rate of shear in terms of the
film-swelling picture, we determine the shear-rate depen-
dence of the shearing parameters, g and h�, from Eq. �15�
based on the optimized drainage parameters given in Fig. 8
and Table IV. We therefore are implicitly assuming that
shearing does not significantly influence drainage, which we
confirm subsequently in the Sec. III E. In particular we ex-
amine whether the shear-rate dependence of the dimension-
less consistency, g, favors the Herschel-Bulkley model with
a non-negligible yield stress or the simpler power-law model
we proposed earlier �39�.

Figure 9�a� shows the dependence of the dimensionless
consistency g from Eq. �15� on the dimensionless angular
velocity ��R /� for the coarse foam. We report only inter-
mediate range of angular velocities, 0.02�� / �rad /s��50,
because for faster rotation larger bubbles are sheared into
smaller bubbles and for slower rotation the fluctuations �i.e.,
noise� in the torque become too large. On the log-log plot g
exhibits a mild curvature that is better fit by a power law
with an additive constant than a straight line. Thus the shear-
ing prefactor shows a Herschel-Bulkley trend, and we formu-
late a hybrid model by combining the Herschel-Bulkley
shear-rate dependence �Eq. �7�� with a film-shearing liquid
volume fraction dependence �Eq. �15��,


 = ��

R
��g0 + ���R/��ng1

1 + h��
� , �21�

where g0 , g1 are the dimensionless yield stress and consis-
tency, respectively. The solid blue �dark gray� curve captures
the trend of the measurements much better than the simple
power law used in our previous publication �39�,


 = ��

R
�� ���R/��ng2

1 + h��
� , �22�

which is shown as a dashed black line and has a fitting error
ten times greater �see Table V�. The differences between our
current and earlier work are that some new FDR experiments
are included, the optimized foam drainage parameters used
here are slightly different, and the calculations of the liquid
volume fraction are more accurate because foam expansion
at high values of � is taken into account—see Eq. �1� in Sec.
I A. It is noteworthy that the power-law index for the hybrid
model is close to n=1 /2, which is in agreement with the
observations of Princen and Kiss �27� and the calculations by
Denkov et al. �30�.

Figure 10 shows the dependence of g and h� on the di-
mensionless angular velocity for the fine foam where the
fitting parameters are also given in Table V. Repeated mea-
surements show that the scatter of the dimensionless consis-
tency, g, shown in Fig. 10�a�, is much larger than for the
coarse foam. The data are fit equally well by the Herschel-
Bulkley and power-law models: the fitting error for both is
the same �cf. the fifth and eighth columns of Table V�. Ex-
perimental improvements, such as maintaining a more stable
foam column height to reduce fluctuations in the torque mea-
surements, are necessary to discriminate between the two
models. Similar to the coarse foam, Fig. 10�b� indicates that
the film-swelling parameter has a weak logarithmic decreas-
ing trend with angular velocity, which given the large uncer-
tainties can also be effectively approximated as a constant.
We note that the values of the averages of the film-swelling
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TABLE V. Fits to the dimensionless consistency, g, from Figs. 9�a� and 10�a� for both the hybrid and
power-law models. The uncertainties were calculated using 95% confidence intervals.

Hybrid model �Eq. �21�� Power-law model �Eq. �22��

g0 g1 n E g2 n E

Coarse 0.21�0.04 14�6.2 0.42�0.06 0.0012 4.3�1.1 0.23�0.03 0.01

Fine 0.11�0.16 11�35 0.4�0.4 0.03 3.3�2 0.25�0.08 0.02
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parameters for both foams are the same and agree with those
obtained in Table IV in Sec. III C.

Figures 9�b� and 10�b� are semilogarithmic plots of the
film-swelling parameter, h�, versus the dimensionless angu-
lar velocity for the coarse and fine foams, respectively. Simi-
lar to the dimensionless consistency, the film-swelling pa-
rameters for both foams are similar; unfortunately, the scatter
is large enough to obscure any clear trends. The solid blue
�dark gray� lines show logarithmic fits, whose coefficients
are given in the legends. The dashed black lines show the
mean values of h�, which are almost the same for both
foams: 22�2 and 23�5. We note that these values are in
agreement with those obtained for the incremental perfusion
experiments listed in Table IV in Sec. III C.

E. Pulsed perfusions at different shear rates

Up to this point we have focused on FDR experiments
performed at constant shear rate and varying liquid volume
fractions. Here we focus on experiments involving the coarse
foam where the shear rate also is changed on the fly, as
shown in Fig. 4�c� in Sec. II. We use the optimized drainage
parameters determined in Sec. III D and show that shearing
has a negligible effect on drainage. Based on these measure-
ments we evaluate the effectiveness of the Herschel-Bulkley
model �Eq. �9��, as well as Coussot’s power-law model �Eq.
�10�� and our hybrid model �Eq. �21��. We finish by compar-
ing the fitting parameters obtained here with those from pre-
vious sections.

Figure 11�a� shows the evolution of the shear stresses for
a series of five successive identical 3-min-long ql
=5 ml /min perfusions, where the angular velocity increases
stepwise roughly by factors of 3 from �=0.3 to �
=30 rad /s. Initially the foam is dry and the shear stresses
start at their maximal plateau values. Perfusion results in
diminished stresses, which level off at t�75 s as indicated
by the dashed vertical lines. Figure 11�b� shows that the rela-
tive changes in the shear stresses are similar and occur at the
same times within a few percent for all five shear rates. Thus
we conclude that for moderate rates of shear the drainage
process is unaffected; however, at high shear rates, �
�50 rad /s, larger bubbles split into smaller bubbles and
thus slow the drainage dynamics. Considering that the ap-
plied shear is orthogonal to the drainage flow, the apparent
decoupling of shearing and drainage is intuitive, but for the
case where the shear and drainage are aligned one might
expect some coupling effects.

In our examination of Coussot’s model we first demon-
strate that the shear band is contained between the cylinders
and does not extend to the outer wall. For the sake of argu-
ment, we assume that shear stresses throughout the gap ex-
ceed the critical stress and therefore the threshold flow con-
dition is superseded by the no-slip boundary condition.
Accordingly the shear stress at the inner cylinder, r=D1 /2,
simplifies to 
�kC�n �see Eq. �C5� in Appendix C�. Having
established that the liquid fraction is unaffected by the shear
rate, it follows that the consistency term, kC, changes the
same way for all five trials. Consequently the ratio of the
stress with that from a reference trial should remain constant,
i.e., �
� / �
ref�= �� /�ref�n. But Fig. 11�c� shows that the ratio
increases by as much as 25% during perfusion, thereby indi-
cating for Eq. �10� to hold that the critical stress is suffi-
ciently large to be relevant for our experiments and that in-
stead the shear band has to be growing radially with
increasing angular velocity. For example, the 25% increase
during perfusion could result from a decrease in the critical
stress with increasing � that results in the shear band shrink-
ing for slower rotation, whereas for faster rotation the shear
band still extends across the gap. Therefore in order for
Coussot’s model to hold, the relationship between the angu-
lar velocity and shear stress for localized shear banding ap-
plies,

10
�6

10
�4

0.2

0.5

µωR/σ

g

0 . 11 + 11 (µωR /σ )0 . 4 2

3 . 3 (µωR /σ )0 . 2 5

10
�6

10
�4

15

20

25

30

35

µωR/σ

h
�

− 5 − 2 . 5 l n(µωR /σ )
23

a b

FIG. 10. �Color online� Fitting parameters for the fine foam.
Dependence of �a� the dimensionless consistency, g, and �b� the
film-swelling parameter, h�, on the dimensionless angular velocity.
Fits to both models are given in the legends and for g also in the
second row of Table V.
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c
= ��2�R�

n�
���kC

R
c
�1/n

+ 1	n

, �23�

which follows directly from Eq. �C5� in Appendix C. �Below
we verify the self-consistency of this assertion by showing
that indeed the critical stress is non-negligible.�

A more quantitative assessment of the threshold and yield
stress can be achieved by considering the steady-state shear
stresses of the pulsed perfusion experiments. These are the
lower shear stress plateaus where the perfusion has produced
a uniformly wet foam and the upper shear stresses where the
foam is drained. Figure 12 shows the relationship between
steady-state shear stresses and angular velocities have a cur-
vature similar to that in Fig. 9�a�, which again indicates that
our simple power-law dependence �39� is inadequate. In-
cluded are fits to the Herschel-Bulkley and Coussot models
for the wet and dry regimes separately and their fitting pa-
rameters are given in Table VI. The threshold stresses and
consistencies for both models diminish with increasing � and
are remarkably similar, and only the power-law indices are
noticeably different: for Herschel-Bulkley n�1 /2 whereas
for Coussot n�1 /3. Recall that Coussot’s shaving cream
experiments �40� indicate that the power-law exponent is n
�1 /4. The fitting errors for the Herschel-Bulkley model are
smaller. Additionally, the larger range of confidence intervals
for the Herschel-Bulkley model indicates its formulation is
more amenable to the data.

We now verify the self-consistency of our assumption and
visual observations that the shear band is contained within
the gap and for moderate rates of shear does not extend to the
outer cylinder. The greatest shear stresses in Fig. 12 are

max=190 and 420 dyn /cm2 for the wet and dry regimes.
Since the shear stresses diminish radially with r−2, they drop
to 57 and 129 dyn /cm2 at the outer wall. These wall stresses
are comparable to the threshold stresses in the table, which
shows that for our range of experiments the shear band is
contained within the gap and only spreads to the outer cyl-
inder at the highest rates of shear. Thus our assumption for
using Eq. �23� is justified.

The values of the two steady-state liquid volume frac-
tions, �=0.0015,0.066, give two sets of predictions for the
consistency and yield stress using Princen’s model, 
y
=90, 264 dyn /cm2 and kP=9.4, 11. As we observed pre-
viously �see Fig. 7�b��, these predictions are roughly two
times too large and are due to extrapolation from emulsion
experiments. We also use the liquid volume fractions to fit
our hybrid model �Eq. �21��, which is shown as a dotted-
dashed blue �dark gray� curve in Fig. 12 as well as the last
row in Table VI. Within uncertainties the shearing param-
eters, g and h�, are in agreement with those determined in
Sec. III D �cf. Tables V and VI�. Rather than six fitting pa-
rameters, the hybrid model only requires four, and aside from
the lowest shear stress measurement, agreement with the data
is better than 10%.

IV. CONCLUSIONS

We have demonstrated the utility of the foam drainage
rheology technique for measurement of the stresses occur-
ring in continuously sheared foams where aging effects have
been removed. Since all Earth-bound foams drain, incorpo-
rating drainage into the rheological procedures is necessary
for accurate results. Rather than trying to prevent or mini-
mize drainage during rheological measurements, drainage
and perfusion are integral parts of the FDR technique that are
used to adjust the liquid volume fraction. Moreover, the foam
is continually replenished inside the shear cell, thereby main-
taining a steady bubble-size distribution. Thus in a single
experiment both the liquid fraction and the shearing rate can
easily be varied, which is impossible using conventional
batch measurement methods. The FDR technique opens up
new avenues for performing controlled rheological experi-
ments providing ramifications for the mechanical behaviors
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FIG. 12. �Color online� The dependence of the steady-state
shear stresses on angular velocity for the uniformly dry, �=0.0015,
and wet, �=0.066, portions of the pulsed perfusion experiments.
Three types of fits are included and their fitting values are given in
Table VI below. The liquid fractions have been calculated using
optimized foam drainage parameters given in Fig. 8.

TABLE VI. Fitting parameters for the pulsed perfusions at different shear rates shown in Fig. 12. The
uncertainties are calculated using 95% confidence intervals.

Model � Threshold stress � dyn
cm2 � Consistency n E

Herschel-Bulkley 0.0016 
y =125�45 kHB=14�17 0.52�0.19 5�10−4

0.067 
y =35�8 kHB=3.9�1.1 0.43�0.05 7�10−5

Coussot 0.0016 
c=145�36 kC=5.9�5 0.34�0.13 9�10−4

0.067 
c=49�10 kC=2.5�0.7 0.33�0.04 3�10−4

Hybrida �All� �g0 /R=121�29 g1=25�18 0.49�0.11 h�=21�2 3�10−3

aThe dimensionless yield stress for the hybrid model is g0=0.30�0.07.
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of a wide variety of soft condensed-matter systems. Ex-
amples might include stress-strain behavior of biological sys-
tems that are perfused with nutrients �53,54�, the effects of
fluid flow on the shape of plant leaves �55� or fluidized beds
whose packing density depends on flow rate �56,57�.

We have used the FDR technique to perform a systematic
investigation of the rheology of draining coarse and fine
foam for a large range of shear rates and liquid volume frac-
tions. With a minimum of assumptions we have verified that
slow to moderate shearing has a negligible effect on the dy-
namics of foam drainage and, we have been able to calculate
the liquid volume fraction that results from perfusion. We
have compared experimental measurements with three differ-
ent models, which are a Herschel-Bulkley model, a power-
law model with a threshold shear stress, and our power-law
model with a liquid volume dependence based on an increas-
ing film thickness with � that is due to drainage. From the
analysis of the coarse foam it became evident that our hybrid
model, which combines a Herschel-Bulkley dependence of
the shear stress on rate of strain with a film-swelling depen-
dence on the liquid volume fraction, is more suitable. How-
ever the quality of the data obtained for the fine foam was
insufficient to effectively discriminate between the different
models, which should be addressed in future studies.

Closely related future work involving the FDR technique
includes varying the foam’s composition as well as the type
of rheological experiments. The sensitivity of modern rhe-
ometers also makes the FDR technique ideal for studying
foam drainage where other methods are not suitable. Differ-
ent types of rheological measurements should be performed
such as oscillatory shearing and stress/strain relaxation, as
well as determination of the yield stress for different liquid
volume fractions. It would be interesting to compare rheo-
logical experiments performed in microgravity with Earth-
bound FDR experiments because in the absence of fluid
drainage the film thickness should be decoupled from the
liquid volume fraction, and thus we expect the shearing be-
havior to differ. In particular, we anticipate that models that
focus on the film’s thickness dependence on shearing, such
as that of Denkov et al. �30�, to be more suitable than our
model that focuses on the film’s thickness dependence on
drainage. Another question that should be addressed is aniso-
tropy: how does the orientation of the shearing plane relative
to the direction of the drainage flow affect the shearing
stresses and drainage? Given the observations of Carrier and
Colin �58� of anisotropic distribution of liquid within a drain-
ing foam, we expect that the orientation of the shearing plane
likely will affect rheological measurements.
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APPENDIX A: DEPENDENCE OF A FOAM’S
PERMEABILITY ON THE BUBBLE SIZE

We reanalyze drainage experiments published earlier �5�
of a foam also made with Dawn dish detergent. We aim to

determine how bubble size affects the drainage permeability
prefactor, K, and the permeability exponent, � �cf. Eq. �4��.
Figure 13�a� shows the dependence of the dimensionless
drainage velocity on the liquid volume fraction for foams of
three bubble sizes, R=2.7, 1.1, and 0.7 mm. The data sets
evidence power-law behavior of roughly the same exponent,
but the three data sets do not fall on top of each other. It
follows ��u� / ��gL2�=K��, where K varies with bubble size.
The reasons for the bubble-size dependence remain unclear;
possibly films make a significant contribution to the drainage
process for smaller bubbles �51�. The interfaces are highly
mobile, as evidenced by swirling interference patterns inside
the films, and thus it is natural to expect that their permeabil-
ity exponents approach 1/2, which is confirmed by Fig.
13�b�. The permeability exponents are centered about �
=0.55, without any apparent trends with bubble size. How-
ever the permeability prefactor, shown in Fig. 13�c�, exhibits
an increasing trend with decreasing bubble size. For lack of a
better understanding, we use the straight line to formulate an
entirely empirical power-law relationship,

K = �7 � 2� � 10−4� L

cm
�−0.7�0.1

= �9 � 2� � 10−4� R

cm
�−0.7�0.1

, �A1�

where the last equality comes from the Kelvin bubble ap-
proximation R=1.39L.

APPENDIX B: FOAM DRAINAGE SIMULATION DETAILS

The foam drainage simulations were performed using
MATLAB’s pdepe function, which solves boundary value
problems for parabolic-elliptic partial differential equations.
Due to the singular nature of the capillary term, ��� /r�, in
the foam drainage equation that leads to numerical instabili-
ties for dry foams, we choose to simulate the spatiotemporal
evolution of the aspect ratio �=L /r instead of r or �. Thus
we rewrite Eq. �6� as

−
2�c�1 − ��2/3 + 3�n�−1�1 − ��

�3 + 2
3�c��1 − ��−1/3 + �n

�t� +
KL2�g

�

� � ���+1�ẑ +
�

�gL
� �� −

	gas�

KL2�g
� �

1 − �
�ẑ	

= 	l��x� . �B1�

10
�4

10
�2

10
0

10
�6

10
�4

10
�2

�

(µ
u

)/
� ρ

g
L

2
�

L=0.5 mm

L=0.8 mm

L=2.0 mm

0.05 0.1 0.15 0.2
0.5

0.55

0.6

L ( cm)

χ

Dawn

SDS

0.02 0.05 0.1 0.2
0.001

0.002

0.005

0.01

L ( cm)

K

χ = 0 .55

7.0�10
�4
(L/mm)

�0.69

a b c

FIG. 13. �Color online� �a� The relationship between the dimen-
sionless drainage velocity, u /�gL2�, and the liquid volume fraction
for three monodisperse foams made with Dawn having edge lengths
L=2.0,0.8,0.5 mm, taken from �5�. Dependence of the �b� perme-
ability exponents and �c� permeability prefactors on edge length for
the three Dawn foams and an SDS foam �59�.

RHEOLOGY OF DRAINING STEADY-STATE FOAMS PHYSICAL REVIEW E 80, 021504 �2009�

021504-13



To perform the simulations we nondimensionalize using the
capillary length and time scale,

� =
�

�gL
and t0 =

��

KL3��g�2 . �B2�

Nondimensionalized variables are denoted by tilde super-
scripts, e.g., z̃, and the foam drainage equation with perfu-
sion and bubbling that is valid at high liquid fraction in one
dimension becomes

−
2�c�1 − ��2/3 + 3�n�−1�1 − ��

�3 + 2
3�c��1 − ��−1/3 + �n

�t̃�

+ �z̃���+1�1 + �z̃�� − �� �

1 − �
�	

= 	̃l��z̃� , �B3�

where �= �	gas�� / �KL2�� and 	̃l=	lt0 /�.
The initial steady state prior to perfusion is when the flux

term inside the bracketed term, �¯ �, on the left-hand side of
Eq. �B3� is zero, thus the liquid distribution satisfies

�z̃� = �� �−�

1 − �
� − 1, �B4�

which is subject to the bottom boundary condition
��z̃bottom�=�crit.

At the top of the foam the hot wire bursts bubbles and the
fluid from these bubbles either drains or is evaporated. Since
the wire loop temperature is 70 °C we make the assump-
tion that evaporation is negligible and thus impose a no-flux
boundary condition at the top, which is applying Eq. �B4� to
the point z̃top.

APPENDIX C: COUETTE SHEAR

We discuss wide-gap Couette shear and how the
Herschel-Bulkley model �Eq. �7�� differs from Coussot’s

power-law model �Eq. �11��. For both formulations the shear
stress approaches �̇n at high shear rates, whereas at low shear
rates the shear stresses approach their threshold values �
c for
the power-law model and 
y for the Herschel-Bulkley
model�. Naively, one might therefore expect only subtle dif-
ferences, and indeed discerning differences between the two
models is difficult. As we show, these expectations are born
out and the differences only become apparent in the limit of
slow angular velocities.

The dimensionless form of the Herschel-Bulkley model
�Eq. �7�� is


̃ = 1 + �̃̇n, �C1�

where the stress is rescaled by 
y and the time scale by
��k /R
y�1/n��R /��. The dimensionless form of the Coussot
model �Eq. �11�� is


̃ = �̃̇n, �C2�

where the stress is rescaled by 
c and the time scale by
��kC /R
c�1/n��R /��. A natural choice for the length scale is
the inner radius, D1 /2. The relationship between angular ve-
locity and radius for the models follows from �̇=r�r� and
the conservation of torque, 
�r�=
�r0��r /r0�−2. The dimen-
sionless ODE describing the angular velocity in terms of the
shear stress at the inner cylinder for the Herschel-Bulkley is

�r̃�̃HB = � 
̃�1�

r̃
2 − 1�1/n

r̃−1 �C3�

and for the Coussot model is

�r̃�̃C = 
̃�1�1/nr̃
−2/n−1

. �C4�

For both models the no-slip condition enforces zero angu-

lar velocity at the outer cylinder, D̃ /2, and the threshold
stress condition imposes zero angular velocity when
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̃�1� / r̃2�1. Therefore the shear band only extends to the

minimum of these two radii, r̃� r̃c=min�
̃�1�1/2 , D̃2 /2�. The
solution for the power law �Eq. �C4�� is

�̃C =
n

2

̃�1�1/n�r̃

−2/n
− rc

−2/n�

= �
n

2
��
̃�1�/r̃

2
�1/n − 1� for 
̃�1�1/2 � D̃2/2

n

2

̃�1�1/n�r̃

−2/n
− �D̃2/2�−2/n� for 
̃�1�1/2 � D̃2/2�

�C5�

and is shown as solid curves in Fig. 14�a� for three different
shear stresses imposed by the rotating inner cylinder. The
solution for the Herschel-Bulkley model �Eq. �C3�� involves
a hypergeometric function of the second kind �whose formu-
lation we omit here� and is shown as dashed curves. For a
given applied shear stress and radial distance, the angular
velocity predicted by the Herschel-Bulkley model is less. In
the limit r̃→ r̃c the angular velocity �C drops off very steeply

compared to �HB. For large applied shear stresses the angular
velocity profiles are virtually indistinguishable. Figure 14�b�
shows the dependence of the shear stresses on the angular
velocity at the inner cylinder. Both models have the same
asymptotic limits for large and small angular velocities, and
the only difference is how the stresses approach unity with
diminishing angular velocity. In the limit �̃→0 the power
law approaches 
̃→1+2�̃, whereas the Herschel-Bulkley
model has a more gradual approach—see the inset of Fig.
14�a�. For large angular velocities both models follow 
̃
��̃n, and by combining Eqs. �C4� and �C5� we obtain

�̇ �
2

n
� , �C6�

which is an approximation we make use of repeatedly to
determine the capillary number in Secs. III C and III D.

It is important to note that although Coussot’s power-law
does have a cutoff minimum shear rate, �̇c, it does not pre-
dict a cutoff in terms of the angular velocity of the inner
cylinder. Thus at low angular velocities the approximation
�Eq. �C6�� is violated.
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